

OPTIMIZING AND QUANTIFYING CO₂ STORAGE RESOURCE IN SALINE FORMATIONS AND HYDROCARBON RESERVOIRS

DE-FE0009114

Mastering the Subsurface Through Technology Innovation & Collaboration: Carbon Storage & Oil & Natural Gas Technologies Review Meeting August 17, 2016

> Charles Gorecki, Director of Subsurface R&D Energy & Environmental Research Center

> > Critical Challenges. Practical Solutions.

© 2016 University of North Dakota Energy & Environmental Research Center.

PRESENTATION OUTLINE

- Benefit to the program
- Project overview
- Technical status
 - Task 2: Saline Formations
 - Task 3: Oil Reservoirs
- Accomplishments to date
- Synergy opportunities
- Summary

PARTNERS

3

Schlumberger

Critical Challenges.

Practical Solutions.

BENEFIT TO THE PROGRAM

- Second, third, and fourth goals of Carbon Storage Program:
 - Improve reservoir storage efficiency while ensuring containment effectiveness.
 - Predict CO₂ storage capacity.
 - Develop best practices manuals (BPMs).
- CO₂ storage resource estimation methodologies will be evaluated and refined, if necessary, for saline and hydrocarbon reservoirs.
- Storage efficiency values will be available for various depositional environments.

4

Lessons learned will be presented in a BPM.

PROJECT OVERVIEW

Goal

• To refine current methods and terms used to estimate CO₂ storage resource in saline formations and hydrocarbon reservoirs

Objectives

- Review literature and industry data
- Construct models, perform simulations
- Evaluate storage efficiency
 - Task 2: By depositional environment (saline formations)
 - Task 3: During CO₂ enhanced oil recovery (EOR)

CO₂ STORAGE RESOURCE/CAPACITY

EERC

Adapted from IEA Greenhouse Gas R&D Programme, 2009, Development of storage coefficients for CO_2 storage in deep saline formations: 2009/12, October 2009.

Critical Challenges.

Practical Solutions.

TASK 2: SALINE FORMATION MODELING

Approach

EERC

- Construct regional- to basin-scale geocellular models representing various depositional environments (primary and secondary).
- Use real saline formations as a guide and data source.
- Supplement petrophysical properties using the Average Global Database (AGD).
- Perform CO₂ injection simulations.

SALINE FORMATIONS SELECTED

Saline Formations and Depositional Environments Selected								
Model Structural Basis	Primary Depositional Environment	Secondary Depositional Environment						
Broom Creek	Eolian	N/A						
Inyan Kara	Delta	Fluvial						
Leduc	Reef	Carbonate Shelf						
Minnelusa	Eolian	N/A						
Mission Canyon	Carbonate Shelf	Peritidal						
Qingshankou and Yaojia	Lacustrine	Fluvial						
Stuttgart	Fluvial	Delta						
Utsira	Clastic Slope	Strand Plain						
Utsira	Clastic Shelf	Strand Plain						
Winnipegosis	Reef	Carbonate Shelf						

- Note: Models are not meant to represent the actual formation. The properties that were used in each depositional model were from the AGD.
- The goal is to look at the effect of depositional environment on storage efficiency.

STATIC MODELING WORKFLOW

SIMULATION WORKFLOW

OPTIMIZATION CASES AND RESULTS

Saline Formation Efficiency Factors for Geologic and Displacement Terms										
$E_{saline} = E_{An/At} E_{hn/hg} E_{\phie/\phitot} E_{v} E_{d}$										
Lithology P ₁₀ P ₅₀ P ₉₀										
Clastics	0.51%	2.0%	5.4%							
Dolomite 0.64% 2.2% 5.5%										
Limestone 0.40% 1.5% 4.1%										

Table from DOE National Energy Technology Laboratory, 2010. Carbon sequestration atlas of the United States and Canada (3rd ed.).

- Optimization cases investigating various parameters (i.e., boundary conditions, water extraction, and horizontal wells) were conducted.
- Dashed lines show efficiency values from the U.S. Department of Energy (DOE) Atlas III.

Critical Challenges.

Practical Solutions.

TASK 2 CHALLENGES

- Analysis of results led to discovery of a shortcoming with the approach:
 - Upscaling core-sized data points to basin-scale models created unrealistic property distribution.
 - Regional- to basin-scale models were no longer representative of depositional environment (e.g., Mission Canyon cells: 13,000' x 13,000' x 10').
- Need to balance three factors:
 - Large-scale static model.
 - Geologic property distribution, which realistically captures depositional environment and facies.
 - Simulation software and computing power limitations (i.e., models with high cell count cannot be simulated easily or in a reasonable time frame).

ADDRESSING THE CHALLENGE: BASIN-SCALE MODELS

ADDRESSING THE CHALLENGE: GRID AND CELL SIZE

Porosity Distribution

ADDRESSING THE CHALLENGE: DEPOSITIONAL ENVIRONMENT

 Generic models of each depositional environment have been created to incorporate revised scale and grid size.

Eolian

Carbonate Shelf-Peritidal

TASK 2: PATH FORWARD

- Closed-boundary lateral boundary simulations are being rerun using the revised models.
- Representative caprock properties are used to mimic pressure movement through the caprock.

TASK 3: HYDROCARBON RESERVOIRS

- A literature review of current storage estimation methodologies in oil and gas reservoirs was performed.
- Data were collected from existing oil fields and ongoing CO₂ EOR projects.
- A statistical analysis was performed for 31 CO₂ EOR sites.

A paper with these findings was published in the International Journal of Greenhouse Gas Control.

$\textbf{NET CO}_2 \textbf{ UTILIZATION RESPONSE}$

Fits of net CO₂ utilization to six representative sites from industry data. The blue line represents observed data; the red line represents the fitted response from a twoparameter asymptotic model.

Critical Challenges. Prac

Practical Solutions.

Uncertainty Quantification: Net CO₂ Utilization P10, P50, and P90

Uncertainty Quantification: Incremental Oil RF P10, P50 and P90

Critical Challenges.

Practical Solutions.

HYDROCARBON RESERVOIRS: MODELING

Approach

- Construct 12 field-scale models (2 miles \times 4 miles) representative of existing oil fields.
- Structure (anticline), thickness, and oil saturations for P10, P50, and P90 models derived from actual EOR oilfield data.
- Geologic properties populated into each model from the AGD.

Case No.	Lithology/Environment	Depth, ft	Thickness, ft	P10	P50	P90	P50_WAG
1	Fluvial – Clastic	4000	25		Complete		Complete
2	Fluvial – Clastic	4000	66	Complete	Complete	Complete	Complete
3	Fluvial – Clastic	4000	209		Complete		
4	Fluvial – Clastic	8000	25		Complete		
5	Fluvial – Clastic	8000	66	Complete	Complete	Complete	
6	Fluvial – Clastic	8000	209		Complete		Complete
7	Shallow Shelf Carbonate	4000	25		Complete		Complete
8	Shallow Shelf Carbonate	4000	66	Complete	Complete	Complete	Complete
9	Shallow Shelf Carbonate	4000	209		Complete		
10	Shallow Shelf Carbonate	8000	25		Complete		
11	Shallow Shelf Carbonate	8000	66	Complete	Complete	Complete	
12	Shallow Shelf Carbonate	8000	209		Complete		Complete

Hydrocarbon Reservoir Model Characteristics

HYDROCARBON RESERVOIRS: SIMULATION

- Performed dynamic simulations, including primary, secondary, and tertiary recovery (CO₂), to evaluate the relationship between CO₂ storage and EOR.
- Utilization and recovery factors were assessed.
- Investigated the balance between associated CO₂ storage and CO₂ EOR.

Cumulative CO_2 or $CO_2 + H_2O$ injection (HCPV) versus CO_2 storage efficiency (tonnes/STB) for the fluvial clastic simulation models. The red dashed line represents the fitted Michaelis–Menten model.

TASK 3 CHALLENGES

- Discovered that hydrocarbon pore volume (HCPV) calculation resulted in varying injection totals across all the models.
 - Results cannot confidently be compared to each other or the industry data set.

Path Forward

- Simulations have been rerun using new 3 HCPV trigger.
- Results are being compared to earlier statistical analysis of industry data set.

ACCOMPLISHMENTS TO DATE

Saline formations •

- Optimum grid size determined.
- Revised geocellular models completed. —
- Updated simulations ongoing. —
- Storage efficiency calculation by depositional environment for a 100-year time frame forthcoming.

25

- Hydrocarbon reservoirs
 - Base case geocellular models completed. —
 - Updated simulations completed.
 - Analysis of results under way.
 - Journal article published.

SYNERGY OPPORTUNITIES

CO₂ Storage Capacity/Efficiency

- Combining an analytical tool with numerical simulations to quantify uncertainty.
- Sharing actual field data across projects would help constrain model properties and simulation results.
- Project learnings can be adopted by others estimating CO₂ storage resource.

SUMMARY

Task 2

- Models presented challenges when balancing three factors:
 - Basin-scale static model.
 - Geologic property distribution, which realistically captures depositional environment and facies.
 - Simulation software and computing power limitations (i.e., models with high cell count cannot be simulated easily or in a reasonable time frame).
- Storage efficiency values are being developed at the effective storage resource level, for a 100 year duration and by depositional environment.

Task 3

- Storage efficiency values for CO₂ storage associated with EOR have been developed both by analyzing industry data and through numerical simulation.
- Post EOR storage is also being evaluated through this effort.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FE-0009114.

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTACT INFORMATION

Energy & Environmental Research Center

University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5355 (phone) 701.777.5181 (fax)

Charles Gorecki, Director of Subsurface R&D cgorecki@undeerc.org

THANK YOU!

EERC

ORGANIZATION CHART

GANTT Chart

							F	Y 13			F	Y 14			F	Y 15			FI	/ 16
		_			-	2012		2	013			2	014			2	015			2016
	Duration	Start	End		Labor	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	(months)	Date	Date	\$ Cost	Hours	Oct Nov Dec	Jan Feb Mar	Apr May Jun	Jul Aug Sep	Oct Nov Dec	Jan Feb Ma	r Apr May Jur	Jul Aug Sep	Oct Nov Dec	Jan Feb Mar	r Apr May Jun	Jul Aug Sep	Oct Nov Dec	Jan Feb Mar	Apr May Ju
Task 1 – Project Management, Planning, and Reporting	48	10/1/2012	9/30/2016	\$ 288,978	1384	D1 ₩ M2														
1.1 – Perform Project Management	48	10/1/2012	9/30/2016			M1 🔶														
1.2 - Project Reporting	45	1/1/2013	9/30/2016				^{D2} ₩	^{D2} ₩	D2 D4	v v ^{D2}	D2 ¥	D2	D2 ₩ D4	¥D2	D2	D2	D2	^{D2} ₩	^{D2} ₩	^{D2} ₩
Task 2 – Optimizing and Quantifying CO ₂ Storage Capacity/Resource in Saline Formations	48	10/1/2012	9/30/2016	\$ 701,771	1890	M3	D31 M4	Y												
2.1 – Literature Review	6	10/1/2012	3/31/2013					M5		M7										
2.2 - Geologic Model Development	12	1/1/2013	12/31/2013				Ľ			M8	Į –	M9	wD5							
2.3 – Simulations to Predict CO ₂ Storage Performance	13	7/1/2013	7/31/2014						Ľ.		Ĭ		ľ				M1			
2.4 – Optimize CO ₂ Storage Efficiency and Resource	21	1/1/2014	9/30/2015								Ļ							м15		
2.5 – Refine Storage Resource Estimation Methodologies and Storage Coefficients	33	1/1/2014	9/30/2016																	
Task 3 – Optimizing and Quantifying CO ₂ Storage Resource in Hydrocarbon Reservoirs	34	10/1/2012	7/31/2015	\$ 609,251	1460				MS											
3.1 – Literature Review	12	10/1/2012	9/30/2013										M11		_ D6					
3.2 – Evaluation of CO ₂ EOR and CO ₂ Storage	16	10/1/2013	1/31/2015							¥.		M10			i i	M12				
3.3 – Hydrocarbon Reservoir Modeling and Simulation	18	10/1/2013	3/31/2015										ļ			M14	₩D8			
3.4 – CO ₂ Storage Resource Methodologies in Hydrocarbon Reservoirs	13	7/1/2014	7/31/2015																	

Summary Task	Key for Deliverables (D) 🖤	Key for Milestones (M) 🔶
Activity Bar	D1 – Updated Project Management Plan	M1 – Updated Project Management Plan Submitted to DOE
	D2 – Quarterly Progress/Milestone Report	M2 – Project Kickoff Meeting Held
Milestone (M)	D3 – Identification of Geologic Formations Selected for Evaluation	M3 – First Saline Formation Selected
Deliverable (D)♥	D4 – Data Submission to EDX	M4 – Saline Formations Literature Review Completed
Critical Bath	D5 – Interim Report: Simulation Results for CO ₂ Storage Performance	M5 – First Geologic Model Completed
	D6 – Interim Report: Balance Between CO ₂ EOR and CO ₂ Storage	M6 - CO2 EOR and Associated Storage Literature Review Completed
	D7 – Manuscript on CO ₂ Storage Performance for Submission to Peer-Reviewed Journal	M7 – All Geologic Models Completed
	D8 – Manuscript on the Balance Between CO ₂ EOR and CO ₂ Storage for Submission to	M8 – First Injection Simulation Completed
	Peer-Reviewed Journal	M9 – Simulations to Predict CO ₂ Storage Performance Completed
	D9 – Best Practices Manual on Optimizing and Quantifying CO ₂ Storage Resource in	M10 – First CO ₂ EOR and Storage Simulation Completed
	Saline Formations and Hydrocarbon Reservoirs	M11 – Reservoir Evaluations Completed
	D10 – Final Report	M12 - Field- to Pattern-Sized Geologic Models Completed
		M13 – Simulations to Optimize CO ₂ Storage Efficiency Completed
	33	M14 – Examination and Refinement of Storage Capacity and Incremental Hydrocarbon Production Completed
	00	M15 – Evaluation and Validation of Estimation Methodologies

BIBLIOGRAPHY

• Azzolina, N.A., Nakles, D.V., Gorecki, C.D., Peck, W.D., Ayash, S.C., Melzer, L.S., and Chatterjee, S., 2015, CO₂ storage associated with CO₂ enhanced oil recovery—a statistical analysis of historical operations: International Journal of Greenhouse Gas Control, v. 37, p. 384–397.

